

Abstracts

Space Mapping Technique for Electromagnetic Optimization

J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny and R.H. Hemmers. "Space Mapping Technique for Electromagnetic Optimization." 1994 Transactions on Microwave Theory and Techniques 42.12 (Dec. 1994, Part II [T-MTT] (1994 Symposium Issue)): 2536-2544.

We offer space mapping (SM), a fundamental new theory to circuit optimization utilizing a parameter space transformation. This technique is demonstrated by the optimization of a microstrip structure for which a convenient analytical/empirical model is assumed to be unavailable. For illustration, we focus upon a three-section microstrip impedance transformer and a double folded stub microstrip filter and explore various design characteristics utilizing an electromagnetic (EM) field simulator. We propose two distinct EM models: coarse for fast computations, and the corresponding fine for a few more accurate and well-targeted simulations. The coarse model, useful when circuit-theoretic models are not readily available, permits rapid exploration of different starting points, solution robustness, local minima, parameter sensitivities, yield-driven design and other design characteristics within a practical time frame. The computationally intensive fine model is used to verify the space-mapped designs obtained exploiting the coarse model, as well as in the SM process itself.

[Return to main document.](#)

Click on title for a complete paper.